Security Enhancements in Red Hat Enterprise Linux
(beside SELinux)

Ulrich Drepper
Red Hat, Inc.

drepper@redhat.com

June 16, 2004

Abstract

Bugs in programs are unavoidable. Programs developed using C and C++ are especially in
danger. If bugs cannot be avoided the next best thing is to limit the damage. This article will
show improvements in Red Hat Enterprise Linux which achieve just that.

1 Introduction Remotely exploitable problems are more serious since
the attacker can be anywhere if the machine is available
Security problems are one of the biggest concerns in thehrough the Internet. On the plus side, only applications
industry today. Providing services on networked comput-accessible through the network services provided bz the
ers which are accessible through the intranet and/or Intermachine can be exploited, which limits the range of ex-
net potentially to untrusted individuals puts the installa- ploits. Further limitations are the attack vectors. Usually
tion at risk. A number of changes have been made to thgemote attackers can influence applications only by pro-
Linux OS] which help a lot to mitigate the risks. Up- viding specially designed input. This often means creat-
coming Red Hat Enterprise Linux versions will feature ing buffer overflows, i.e., situation where the data is writ-
the SELinux extensions, originally developed by the Na-ten beyond the designated memory area and overwriting
tional Security Agency (NSA), with whom Red Hat now other data.
colaborates to productize the developed code. SELinux i]
means a major change in Linux and is a completely Sep_One way to' avoid buffer overflow problem§ |s'to use con-
arate topic by itself. trolled_rl_,mtlme_s _/vhere memory access is first checked
for validity. This is not part of the standard C and C++
Here, we are going to concentrate on extensions Red Hatuntime, which means many applications are in danger
made to the OS which increase security but are not parbf these problems. Intruders can misuse these bugs in a
of, and do not require SELinux. The goal for these exten-number of ways:
sions was to have no negative impact on existing code,
if possible, to work without recreating binaries, and to
require minimal changes to the process of building ap-
plications. The remainder of this paper introduces three
separate extensions Red Hat made. It is not meant to be
a complete list but rather should serve individuals who
want to increase security of the Red Hat Enterprise Linux
based systems as a guideline to adjust their code and in-
stallation to take advantage of the new development. Be-
fore we start with this, some words about exploiting se-
curity problems.

o if the overwritten buffer on the stack is carefully
crafted, overflow can cause a naturally occurring
jump to a place the intruder selected by overwrit-
ing the original return address. The target of the
return might also be in the data written onto the
stack by the overflow;

e a pointer variable might be overwritten. Such a
variable, if located in memory in front of the over-
flowed buffer, could then be referenced and maybe
written to. This could allow the intruder to write

2 Exploiting Security Problems a value, which might also be controlled by the in-

truder, into a specific address;

When attempting to categorize security problems, one

should first distinguish remotely and locally exploitable ~ ® @ normal variable might be overwritten, altering

problems. The latter can only be exploited if the attacker the state of the program. This might result in per-
already can execute code on the target machine. These Mission escalation, wrong results (think transfer of
problems are harder to protect against since norally money to wrong accounts), etc.

all of the OS’s functionality is available and the attacker

might even be able to use self-compiled code. Although these possible effects of an overflow might seem

103" as in the whole system, not just the kernel. nothing bu_t a gopd way to c_rash _the applicati.on,_attackers
2SELinux changes this. often find ingenious ways in which the application does

file:drepper@redhat.com

not crash, but instead does something to the attacker'sause many of the common exploits to fall only in the
liking. This is aided by the fact that identical binaries are last, and least dangerous category.
widely available and used in many places. This allows
the attacker to.study the bi_nary locally before Fh.e attacks. 4 Exec-Shield
Randomness in the binaries would be beneficial but for
various reasons it is unpractical that end users recreatge start with an concrete example of some broken code
the binaries which differ sufficiently. For one, vendors which in one form or another far too often appears in
will violently protest since it throws attempts to provide deployed programs:
service and maintenance completely off the track.
int
match (const char *passwd)

3 ThePlan {
char tmp[MAXPASSWD];

The best protection against these problems is, of course, if (gets (tmp) == NULL)

auditing the code and fixing the problems. Given suffi- return 1;

cient resources these will have some positive effect, but return strcmp (passwd, tmp);

being human, programmers will always miss one or an-}

other problem. And there is always new code written.

Besides, the investment to audit all relevant code is pro-There are two factors which make this code especially

hibiting. Finally, this will not at all protect against prob- dangerous. First, the usegidts which isalwayswrong.

lems in3' party programs. The function does not allow specification of the size of

the buffer, so uncontrolled input can overflow the buffer.

A second line of defense is needed. The worst intruders._, . . o .
. S ; . his is exactly what happens here, but what is it that is
can achieve is circumventing the security of the system. X
overflown? The answer is of course the arnayp, but

If this happens, all guards of the system have no effect, .) :
Achieving this isvery difficult with SELinux properly there is more to it. The array is allocated on the stack.

set up. Each application has been assigned a role whicl%)n machines where the stack grows downward in the
) o o . address space (for all common architectures other than
gives it limited capabilities. Changing roles can only be

. HP/PA) the arraytmp is located below the data gener-
done under the control of the kernel and only in ways .
. . ated for the function call and data the callers put on the
the system adminstrator allows. Ideally, there is no all-

powerful super user anymore. As stated before, we Wi"stack. For many architectures, the data generated for the
not discuss SELinux here ' ' function includes the return address. Now all together

this means that the input andin , read bygets , can
One notch down the list of dangers is the possibility for be used to overwrite the return address of the function
the intruder to take over the process or thread. This re<all and even set up the frame for the code to which the
quires that the intruder inject code of his own choosing fake return address points. In other words, this code al-
into the running process and cause this code to be exdows an attacker to redirect the execution of the code to
cuted. an arbitrary place.

The next level down would be an intruder changing the It varies where this code is that the attacker wants to ex-
behavior of an application, not to enable further security ecute. It could be a known address in the address space.
escalation, but instead to cause havoc by changing th&Ve will handle this case in the next section. The more
outcome of the computation (for instance, the aforemen-dangerous case is where the code comes along with the
tioned transfer to a wrong account). buffer overflow. Note that the standard I/O functions of

) o . the C runtime work equally well for arbitrary binary data.
Since C and C++ .apphcatlons are usually not written tp Often only the byte values representing newlinen(,
cope gracefully with bugs, the best one can hope for isp,03) and NUL (0x00) are special. All other values can

to end the infected run of the application. This is the o \;5ed freely. So an attacker could fill the arvap
best to do if the state of the program must be assumeg;;i, arbitrary data.

to be contaminated. If the application provides mecha-
nisms to shut down only one thread or perhaps drop only
the client connection which caused the problem, this can
be done as well. But this requires highly sophisticated
programming which is found only in applications with
extreme uptime or security requirements. If the applica-
tion is shut down, the worst possible outcome is that the
intruder attacks again and again, causing one shutdown

after the other. This can be prevented with higher-levelwe could find ourselves in a situation as in this figure. It
security, by configuring the firewall or protocol analyz- represgnts the stack memory when the exam_ple_ function
ers. match is called. The green area, the artay, is filled

with data (e.g., program code) by the attacker and the re-
The mechanisms developed by Red Hat automaticallyturn address of the function is redirected to an address

low | high

tmp return
address

2 Version 1.2 Security Enhancements in RHEL

inside the arraymp. If this return to the wrong address a jump using the address will cause execution of some

succeeds the intruders code is executed. It takes less tharbitrary region of memory which much more often than

a few dozen bytes of code to create a socket, listen omot causes the process to crash since the memory or the

it, and redirect input and output to a shell. \@ila re- code is invalid (e.g., because it is actually data). And

motely accessible shell with the same privileges as theeven if the exploit can be repeated, since the process is

application which has been “cracked”. automatically restarted, at every restart the stack address
is different, so no information from the previous run can

For this exploit to be successful a number of conditions e used.

must be met. First, the return address which will be use

is an absolute address. That means if the code in the afEvery normally configured Linux system provides the
ray tmp is to be executed, the intruder has to know the /proc filesystem which exposes information about the
absolute address of array. It is possible to get the addresainning system. Among the information is information
wrong by a certain margin: the “landing area” just has about each process, which in turn contains information
to be filled with no-op operations which then permits the about the memory regions in use. The filaps in each
fake return address to be that of any one of no-op instrucprocess’/proc entry shows the memory regions for the
tions. current process. This file makes locating the stack easy

Th q dition is that th has o all since the permissions allow every process to read every
€ second condition 1S that th€ processor has 10 alow,, o process’ file. The Exec-Shield therefore changes
execution of the code. This might seem obviously the

but it | P th virtual h this: themaps file is only readable for the owner. This
case but It Is not. Processors with virtual memory han-joayes our attacker without the necessary privileges to

dling at some level implement a bit which determines read this file only with the hope that due to some pro-
whether the content of a memory range can be exeC“teg]ramming error or stupidity on the programmer's side

or not. For most architectures support by Linux the stack ointer values are exposed. This should never happen
has always been executable, so the exploits sketched ab Ny usually does not, since there is not much value be-

would work. cause pointers are of no use to other processes.

Removing the second factor required for the exploit re-
quires marking the memory regions the attacker can ac-
cess for writing as non-executable. In fact, the goal should

The Exec-Shield extension Red Hat developed and introP€ 10 mark as much of the address space as possible not-
duced in the Fedora Core 1 release addresses these poiffi§ecutable. This goal hits some problems if we do not
and more. Similar and even stronger extensions existed/@nt to change the application binary interface (ABI) or
before ([3], [4]), but neither has an effect on the execy- imit the user in how code can be ertte_n or what pro-
tion environment low enough to be included in a general, 9r@Ms can be executed. On some architectures, notably
as opposed to a high-security, Linux distribution. For in- IA-32, the stack is executable for a good reason: for some

stance, any restriction on the size of the available virtua/Source code constructs the GNU C compiler (gcc) ac-

memory is completely unacceptable since there are applitu@lly generates code which is written to the stack and
cations which need every bit that is available. As stated€*ecuted there. The details are quite complicated and
before, the solutions which can be used in Red Hat En-the feature requiring this (nested functions) is a rarely
terprise Linux must have no negative impact on existing ursded extensions gcc supports. To not prevent existing
applications. This does indeed rule out a number of dras ~ Party binaries and those requiring executable stacks

tic security measures which undeniably increase security!"mM running it is necessary to change the permission of
the stack dynamically. The Exec-Shield extension does

The first small change is that the stack location is dif- this by respecting information contained in the binary.
ferent for every process. The kernel automatically ad-The compilers and the linker were extended to keep track
justs the stack address downward by a random amoungf whether the compiled and linked code needs an exe-
of bytes. This does “waste” some memory and addresgutable stack. The result is recorded in a new ELF pro-
space, but the possible range of the downward adjustmergram header entreT.GNUSTACK The kernel uses this

is chosen so that this is not a problem. This approachinformation to determine the initial permission. If the
works since nothing in the process itself ever must de-program, and if necessary the dynamic linker, are happy
pend on the exact stack address. Such a property of @ith a not-executable stack, the kernel will disallow ex-
process has never been guaranteed. With the stack rarcution on the stack. Otherwise the stack is set up for
domization in place it is harder to create an exploit whereexecutable code. For the kernel the story ends here. But
the code loaded into memory as part of the exploit is ex-since each Dynamic Shared Object (DSO, “shared library”)
ecuted. can bring in its own requirements, the dynamic linker

To address the code written to the stack, the address orf"as to keep track whether there is any code loaded which

. heeds an executable stack. When a DSO with the re-
the stack has to be known. An attacker could potentially _"~. ; o .
. : quirement is loaded, the permission for all stacks in use
try several times and hope to get some kind of feedback g .
i .) must be changed. This is plural, stacks, since the pro-
allowing him to determine the actual address. The prob-

lem with this approach is that once the address is wrong,cess at this point might already have created threads. The

Removing the Conditions

Ulrich Drepper Version 1.2 3

dynamic linker does all this automatically and transpar- be addressed in the next section. The executable itself
ently, with some help from a new kernel feature which is a bit special though. for it not only consists of the
allows to easily change the permissions of main stack.usual code and data parts, but it also hashitke area
Appendix[A has some more technical details on how toattached to it. Thérk area (aka heap) is a region of
create binaries correctly. the address space in which the process can allocate new
memory for interfaces likenalloc . This area started
traditionally right after the BSS data of the executable
(BSS data is the part of the data segment which holds the
uninitialized data or the data explicitly initialized with

With these extensions the ability to misuse the stack iszero). But there never has been any formal specification

drastically reduced. But there are other parts of the ad-for this. And in fact, since aImos’F no program (for good
dress space into which the intruder could write the ex_reasons) uses thek interfaces directly, user programs

loiting code and execute it. There are again two parts to?'c N€Ver exposed to the exact_ plz_acement of the head.
b g g P Which brings us back to randomization: the Exec-Shield

this: locating the memory and executing the code. The :

Exec-Shield extensions try to address both. p_atch random|zes the heap address as well. A random
sized gap is left between the end of the BSS data and the

To prevent easily locating the writable data memory, theystart of the heap. This means that objects allocated on

should be placed at different addresses for every run othe heap do not have the same address in two runs of the

the process, just as it happens for the stack. The writablesame program. The change has remarkably little negative

data memory is usually not alone, though, its position effects. The only known problem is that while building

relative to the accompanying code is usually fixed. Thisemacs (not running the final program) the dumping rou-

means the entire binary must be loaded at different adtines depend on the heap directly following the BSS data.

dresses every time. Doing this provides no problems forThe workaround is to disable Exec-Shield temporarily.

DSOs which are by definition freely relocatable. The

kernel randomizes the addresses for requests from user-))

level when a mapping of a file is requested without fixed Implementation Details

requirement on the address (i.e., the first parameter for

mmapis NULL). The dynamic linker never insists on a

. In the discussion of Exec-Shield so far, we glossed over
specific load address but it can suggest addresses if thc—F1 . . . o

SN L T o the implementation details. Exec-Shield is a kernel patch
application is prelmke.Thls means prelinking and load
address randomization exclude each other and all the changes happen transparently for the user. But

' one detail of the implementation is worth noticing.

(_)ne_possmlhty opened by the load addres_s ra.ndo_m|za—The developers of the 80386, the first implementation of
tion is that the kernel can choose to map binaries in the

first 16MiB of the address space. The noteworthy aspec{he IA'32 arphltecture with protect_ed mode, ;aved some
of this is that all addresses in this range contain a Ny Prectous chip real estate by not implementing the flag

byte. As mentioned above, NUL is one of the two spe- governing execution permission for each memory page

; . . in the virtual address space. Instead, the permission for
cial characters in standard 1/0O handling. More concrete,, ,) T . . .
read’ and ‘execution’ are collapsed into one bit. With-

itis special in strm.g haqdlmg. Itis nqt pOSSIbIe t.o han- out making data unreadable, it is not possible to control
dle a copy of a string witlstrcpy or similar functions execution this way
beyond the NUL byte. For the attacker, who has to in- '
sert addresses of the code which is called for the exploitThere is a way to control execution, though, but it is con-
this poses a big problem if the representation of that advoluted. The segmentation mechanism of the processor
dress contains a NUL byte. This part of the address spacgrovides a coarse mechanism to control execution. With-
is rightly referred to as the ASClI-armor area. By mov- out the Exec-Shield patch, the segment used for program
ing as much code to the first 16MiB of address space.execution (selected with thiscs register) stretches the
a lot of code is out of reach for this type of attack. If whole 4GiB and therefore contains the stack and all data.
there is room in the memory region, the kernel will map The Exec-Shield patch changes this. The kernel now
all memory there for which the protection bits include keeps track of the highest address which has been re-
PROTEXEC The dynamic linker always set this bit for quested to be executable. All addresses from zero to the
the firstmmapcall to load a DSO, so things happen au- highest required address are kept executable. Requests
tomagically. for executable memory are made exclusively by calls to
mmapor mprotect and the implicitly added mappings
space: the executable itself. An executable, as opposeﬁj the program ltself and the dynamic !mker. This means

e stack is usually not executable. Since new mappings

to DSOs, is linked for a specific address which must be_ . .)
adhered to, otherwise the code cannot run. Red Hat de\f\’Ith the PROTEXECDit set are mapped into the ASCII-

veloped a solution for this problem as well, which will armor area, but pure data mapping are mapped h'.gh up,
this means the range of executable code is kept minimal

35ee theprelink package. Prelinking is a way to speed-up pro- &nd data usually ?s not exgcutable. I_f an intruder has con-
gram startup. trol over the application this protection can easily be de-

Beyond the Stack

By doing all this, only one fixed rock is left in the address

4 Version 1.2 Security Enhancements in RHEL

feated by callingnprotect with aPROTEXECparame- It is easy to miss a position-dependent file linked into
ter for an object high up in the address space. But thea PIE. Therefore, developers should always check after-
Exec-Shield patch is about preventing the intruder to getward whether the PIE is free of text relocations. Text re-
such control, not to contain him afterward. locations are the result of such position-dependent code
being used. The linker will detect the problems, though,

- and add a flag to the PIE's dynamic section. One can
5 Position Independent Executables check for the flag with this:

In the previous section it has been described how the
Exec-Shield patch makes an attacker’s life harder by ran> readelf -d BINARY | fgrep TEXTREL
domizing the addresses where various parts of the run-
ning program are located. With one exception: the ex-If this pipeline produces any output, the program con-
ecutable itself. There is nothing the kernel can do totains text relocations and should be fixed. It is not nec-
change this. But the programmer can. essary for correct execution, but running a program with

) . text relocation means the memory pages affected by the
To load an executable at different addresses every time ifg|ocations are not sharable (increasing resource usage)
must be built relocatable. This sounds familiar: a DSO g4 that startup times can be significantly higher. The

is relocatable. Therefore, Red Hat modified the c:ompilerscript in appendik B will flag PIEs with text relocations,
and linker to create a special kind of executable: Positionamong other things.

Independent Executables (PIEs). PIEs are a merger be-
tween executables and DSOs. From the kernel’s point oMany applications which are directly exposed to the In-
view PIEs are nothing but DSOs. The Linux kernel for ternetand some other security relevant programs are con-
a long time supports executing DSOs just as if they wereverted to PIE in Red Hat Enterprise Linux and Fedora
executables so no kernel changes are needed. Core. It does not, in general, make sense to convert all
binaries. Running PIEs is excluding them from taking
The tools had to be extended, though. Normal DSOs do,gyantage of prelinking. The kernel and dynamic linker
not contain all the information an executable has and.yj randomize load addresses of all the loaded objects
equally important, are compiled in a more general way ¢, p|Es with the consequence that the PIES start up a bit
which makes the code slower than necessary. But ongyoer. If startup times are not an issue (and we are talk-

step atatime. ing about differences usually in the sub-second range, of-

To create a PIE, the compiler and linker need to be told€n much lower) PIE can be used freely. Alllong-running
about this. The compiler has two new optioripje daemons are good candidates and certainly all daemons
and-fPIE which are analogous to the already present@ccepting inputfrom networks. Butalso applications like
fpic and-fPIC options. Just like the counterparts, the Mozilla, which can be scripted from the outside, should

two new options instruct the compiler to generate posi-P€ converted.

tion independent code. But on top of this, the compiler

can assume that all symbols defined locally are also re§ ELF Data Hardening

solved locally. A detailed explanation of this is long and

complicated. The interested reader is referred to [1]. With Exec-Shield and PIEs we have done work on the

. L . big building blocks of a running application. After this
When generating PIEs itis important to ensure all objectjt \yas time to look at the individual blocks in detail to

files linked ir_lto t_he gpplic_ation are position_—independent. see what can be done to increase security at that level.
For the application itself it means that all files should be 1p¢ jngividual files are all ELF files which, looked at in
compiled with thefpie option (or-fpic , though 1ess o6 detail, present themselves as a sequence of sections

optimal). The more dangerous part are files linked inyyhich each have a certain purpose. The following list
from archives, especially when they come from archivesgpq\s the various sections in a normal IA-32 application
which are not part of the program’s package itself. Theq the order a linker would create so far.

files in the archive must also be position independent
which might require coordination with another package.

Additionally, if the archive is also used for other pur- [;] "me“;Bl NF(’)RT(EGB'TS
poses, compiling the contained files wifpie might { 3} ‘Eg;eﬁ tag HASH
actually be wrong. If the code ends up in a DSO the[4] :dynsym DYNSYM
symbol resolution rules would be violated. [5] .dynstr STRTAB
Once all the files are compiled, the linker has to be told | S] -ghu.version S\’I\‘J’_Versyrg
that a PIE has to be created. This works by adding th 8} :?;fjd;ﬁrs'on—r e emee
-pie option to the command line. The gcc driver pro- 9] rel.pit REL

gram then makes sure the correct crt files are linked inj g} jnit PROGBITS
etc. Needless to say that thipie option as well as [11] .pit PROGBITS
-pie are not supported if an old version of gcc or a non- [12] .text PROGBITS
gcc compiler is used. [13] fini PROGBITS

Ulrich Drepper Version 1.2 5

[14] .rodata PROGBITS Even though this is what the linker does, this is not the

[15] .eh_frame PROGBITS optimal result. The compiler actually does better. It emits
[16] .data PROGBITS the array in a separate section nameata.rel.ro
[17] .dynamic DYNAMIC

which contains data that needs to be modified by relo-

Eg} 'gig';z ';';gggﬂ_z cations, but is otherwise read-only. Unfortunately there
[20] .jcr PROGBITS is no match for this in the current section layout.

[21] .got PROGBITS This is not the worst problem, though. The order in
gg} 'ts)iztrtab STPRRTC';(;B'TS which the writable sections are currently lined up has

only historic reasons, not technical ones. Unfortunately,
not much thought went into the layout so far. If an array
The first 15 sections do not have to be modified at run-in the.data section is overflown, it is possible to mod-
time and can be mapped into memory to not allow write ify all of the following section, especially including the
access. The remaining section, except number 23 whichdynamic and.got sections. This is something which

is not needed at runtime at all, are data sections and neeld many situations can be avoided by simply reordering
to be modified. This is the part of the program which the sections so that the sections with ELF data structures
is putting the program in danger. Any place which is precede the program’s data sections. This does not mean
writable is a possible target for an attacker. that overwriting the program’s data is not harmful and
cannot be exploited, but protecting the ELF data struc-
tures removes yet another weapon from the arsenal of the

-I .bss overflow attackers. The IA-32 binutils package available in Fedora
-data overflow Core 2 and later releases by Red Hat would produce the

read—only/exec .data ELF data .bss following section layout:
This graphic shows the different parts of the ELF file. [1] -interp PROGBITS
The hatching indicates the memory is write-protected.[2] -note.ABl-tag NOTE
The red bars indicate which areas a potential buffer over[i} 'zaiz m :ﬁ(ﬁgYM
run inthe.data and.bss section respectively can eas- [5] dinsﬁ STRTAB
ily affect. [6] .gnu.version GNU_versym
For instance take thgot section. This section (part of [7] -gnu.version_r GNU_verneed
the violet colored area) contains internal ELF data Which{ g} .:::.d?:n RRI;EL
is used at runtime to find the various symbols the pro- 10] ..init.p PROGBITS
gram ne(_ads. The section contains p_omters and the pointe 4 plt PROGBITS
ers are simply loaded from that section and then derefer{15] text PROGBITS
enced or even jumped to. An attacker who could write [13] fini PROGBITS
a value to this section would be able to redirect the datg[14] .rodata PROGBITS
accesses or function calls done using the entries of th¢l5] .eh_frame PROGBITS
.got section. Other sections fall into the same category.[16] .ctors PROGBITS
There are actually only two real data sections the pro-[17] .dtors PROGBITS
gram uses.data and.bss . Note that therodata (18] jer PROGBITS
section containing truly read-only data, like constants orl19] -dynamic DYNAMIC
strings falls into the aforementioned 15 sections. And E(l)} .gg: it PRP&;O;_IE%TS
even this is not the entire story. Consider the following [22] :gatf PROGBITS
code: [23] .bss NOBITS
[24] .shstrtab STRTAB

const char *const msgs[] = {

"message one", "message two" The first 15 sections have not changed and we can ig-
b nore the last section since it is not used at runtime. The

data sections have changed drastically. Now all the sec-
The arraymsgs is declarectonst but in a position in- tions with ELF internal data precede the program’s data

dependent binary, the address of the strings that the elS€ctions.data and .bss . And what is more, there is
ements of the array point to is not known at link-time. & NeW sectiongot.plt whose function is not '.mmEd"
Therefore, the dynamic linker has to complete the re_(:}tely apparent. To take advantage of 'FhIS adplmonal sec-
location by making adjustments which take the actuallion One has to pasg relro to the linker (i.e., add
load address into account. Making adjustments meangW!:-z.reiro to the compiler command line). If this
the content of the arraysgs has to be writable. Thisis IS done the ELF program header gets a new entry:

why in the section layout above the armaygs would be

placed in thedata section. readelf -| BINARY | fgrep RELRO

6 Version 1.2 Security Enhancements in RHEL

GNU_RELRO 7 Conclusion

These security enhancements described in this paper make
This entry specifies what part of the data segment is onlynoticeable impact on known exploits. They do not, how-
written to during the relocation of the object. The intent ever, prevent the exploitable program bugs in the first
is that the dynamic linker marks the memory region asplace. These are still present and attacker can take advan-
read-only after it is done with the relocations. The dy- tage of them. The changes do often radically reduce the
namic linker in glibc 2.3.4 and later does just that. We consequence. Instead of being remote root shell attacks
get the following changed picture: program bugs often are mere Denial of Service (DoS) at-
tacks. These are not nice and disturb a systems operation
but they do not necessarily mean security problems and
_E bss overflow they are easier to handle. System monitoring software
-data overflow can detect a program crashing and it can keep track of
read-only/exec ELFdata .data .bss this. If crashes are suddenly frequent system administra-
tor can be alerted to the fact.
We see the enlarged write-protected area and the buﬁeé([ogether with the SELinux integr.ation _into the Linux
overruns can ‘only’ affect thedata and.bss sections emel these. chgnges mgke the life qf mtrudgrs harder.
easily. No program is disrupted, if a program is not adjusted for
the security enhancements it will continue to work as be-
To enable changing the permission in the data, the linkeffore. There are no restriction of the use of the virtual ad-
has to add some padding on the file. Memory page perdress space which together means that the resistance to
mission can only be changed with page granularity. Thisintroduce these features is minimal. Disruptions are still
means that if a page contains just one byte which needgossible, but the severity of the attacks is significantly
to be written to, it cannot be marked as read-only. Thereduce which will make system administrators and legal
linker therefore aligns the data so that the data whichdepartments very happy.
is read-only after relocation is on a separate page after
loading the data. This is why we now have the separate
.got.plt section: the first part of the Global Offset Ta-
ble (GOT) is modified only during the relocation. The
second part, associated with the Procedure Linkage Ta-
ble (PLT), is modified later as well. It is therefore kept
along with the program’s data in the part of the data seg-
ment for which the protection is not changed.

One tiny detail: it is not entirely true that theot.plt

section is always modified after relocation. In case no
runtime relocation happens this is not the case. And
the programmer can enforce this by adding thenow
linker option. If this option is used, the linker sets a flag
in the generated binary which causes the dynamic linker
to perform all relocations at startup time. This slows
down the startup, in some cases significantly, and might
in some very rare cases even alter the behavior of the
application. But the benefit is that the linker can move
the .got.plt section also in the region, which is read-
only after the relocation. This is good protection, since
known attacks do target this part of the GOT. Daemons
which are long-running and especially endangered net-
worked application should be linked with now to add

the extra protection.

Upcoming Red Hat Enterprise Linux releases will have
all applications created with the new linker which orders
the sections correctly. In addition, each program is ex-
amined whether it is a candidate for the addition of the
-z relro and-z now option. After all this protection

is applied, the only memory an attacker can write to is
the stack, the heap, and the data sections of the various
loaded objects. And unless there are good reasons, none
of these memory regions is executable.

Ulrich Drepper Version 1.2 7

A Using Exec-Shield

The GNU C compiler and the linker usually determine whether the code needs an executable stack correctly. To see
what is recorded one can run commands like these:

$ readelf -l /bin/ls | fgrep STACK
GNU_STACK 0x000000 0x00000000 0x00000000 0OxO000000 0x000000 RW 0x4

The second to last column of the output shows that the stadk foreed not be executable, only read-writats&)y(
If the output isRwWxthe binary is marked to need an executable stack and the kernel or dynamic linker will make the
necessary adjustments. In any case, this is a sign that one should examine the binary since it might be unintentional.

Unintentional execution permission can be granted if any files linked into the binary were compiled with a compiler
which does not add the necessary attribution of the object files, or the file was written in assembler. In the former case
one must update to more recent versions (in case the compiler is a GNU compiler) or demand from the vendor that the
necessary instrumentation is done. The linker always defaults to the safe side: if any input file does not indicate that a
not-executable stack is OK, the resulting binary will be marked as requiring an executable stack.

The case of assembler files is more interesting since it happens even with an up-to-date GNU compiler set installed.
There is simply no way the assembler can determine the executability requirement by itself. The programmer must
help by adding a sequence like the following to every assembler file:

.section .note.GNU-stack,"",@progbits

Alternatively, the assembler can be told to just add this section, regardless of the content of the file. This is possible by
adding-Wa,--execstack to the compiler command line.

Once the binary is created, the information needed to make a decision is usually lost. If a user knows for sure that no
executable stack is needed, it is often possible to mark the finished binary appropriately. This is especially useful for
binaries, executables and DSOs, which are not available in source form. The tool to use isxeaetk and itis

part of theprelink package. Running

$ execstack -s /usr/java/*/bin/java

adds ePT_GNUSTACKentry in the program’s program header. Adding this entry might sometimes fail for executables.
Adding something in the middle of the executable cannot work if not all the interdependencies between the different
pieces of the executable are known. Those interdependencies are lost at link-time unkpssptien for the linker is

usedd

There is one more way to influence the stack handling. The kernel allows the system administrator to select a global
setting influencing the use of Exec-Shield. One of three variants can be selected by writing one of the,strioga
into the file/proc/sys/kernel/exec-shield

0 Exec-Shield is completely disabled. None of the described protections is available in any process started after-
ward.

1 The kernel follows what theT_GNUSTACKprogram header entry says when it comes to selecting the permissions
for the stack. For any binary which does not hav@TeGNUSTACKentry, the stack is created executable.

2 This option is similar tol, but all binaries which do not have R _GNUSTACKentry are executed without
executable stack. This option is useful to prevent introducing problems by importing binaries. Every unmarked
binary which does need an executable stack would have to be treateskedgtitack to add the program header
entry.

For debugging purposes it might be useful to not have the load address of binaries, DSOs, and the address of the stack
at a different place every time the process is restarted. It would be harder to track variables in the stack. To disable just
the stack randomization the system administrator can Wiiito /proc/sys/kernel/exec-shield-randomize

4This option is rarely used and chances are it does not work.

8 Version 1.2 Security Enhancements in RHEL

B Script to Test for Safe Programs

It is nice to have all these security improvements available. But how can one be sure they are used? Red Hat uses the
following script internally which checks currently running processes. Output can be selected in three different ways.
For each process, the script prints out whether the program is a PIE and whether the stack is writable or not. Especially
the later output is useful since no static test can be as thorough. At runtime, the permissions can change and this would
not be recorded in the static flags. Every process marked to have Exec-Shield disabled is a possible problem. If the
stack is executable just because the flag is missing, usex#iestack tool (see previous section). If a program is

shown to not be a PIE this does not necessarily mean this is a problem. One has to judge the situation: if the process is
a high-risk case since it is accessible through the network or is a SUID/SGID application, it might be worth converting
the application into a PIE.

#!/bin/bash

Copyright (C) 2003, 2004 Red Hat, Inc.

Written by Ingo Molnar and Ulrich Drepper

if ["$#" 1= "1"]; then
echo "usage: Isexec [<PID> | process name | --all]"
exit 1

fi

if ! test -f /etc/redhat-release; then
echo "this script is written for RHEL or Fedora Core
exit 1

fi
cd /proc

printit() {
if [-r $1/maps]; then
echo -n $(basename $(readlink $1/exe))
printf ", PID %6d: " $1
if [-r $1/exe]; then
if eu-readelf -h $1l/exelegrep -q 'Type:[[:space:][*EXEC’; then
echo -n -e '\033[31mno PIE\O33[m, ’
else
if eu-readelf -d $1l/exelegrep -q ° DEBUG[[:space:]]*$’; then
echo -n -e "\033[32mPIE\0O33[m, ’
if eu-readelf -d $1/exe|fgrep -q TEXTREL; then
echo -n -e "\033[31MTEXTREL\033[m, '’
fi
else
echo -n -e '\033[33mDSO\033[m, '’
fi
fi
if eu-readelf -I $1/exe|fgrep -q 'GNU_RELRO’; then
if eu-readelf -d $1/exe|fgrep -q '_BIND_NOW’; then
echo -n -e \033[32mfull RELRO\033[m, ’
else
echo -n -e '\033[33mpartial RELRO\033[m, '’
fi
else
echo -n -e '\033[31lmno RELRO\033[m, '’
fi
fi
lastpg=$(sed -n ’[[:xdigit:]]*-[[:xdigit:]]* rw.. \
\([[:xdigit:]]*\) 00:00 0$/p’ $1/maps |
tail -n 1)
if echo "$lastpg" | egrep -v -q ' rwx.
lastpg=""
fi
if [-z "$lastpg"] || [-z "$(echo $lastpg|lcut -d ' ' -f3]tr -d 0)"]; then
echo -e "\033[32mexecshield enabled\033[m’
else
echo -e "\033[31lmexecshield disabled\033[m’
for N in $(awk {print $6}' $1/maps | egrep '\.solbin/ | grep "/ \

. then

Ulrich Drepper Version 1.2 9

| sort -u); do
NE=$(eu-readelf - $N | fgrep STACK | fgrep 'RW)
if ["$NE" = ™]; then
echo " => $N disables exec-shield!"
fi
done
fi
fi
}

if [-d $1]; then
printit $1
exit 0
fi
if ["$1" = "--all"]; then
for N in [1-9]%; do
if [SN != $$] && readlink -g $N/exe > /dev/null; then
printit $N
fi
done

exit 0
fi

for N in $(/sbin/pidof $1); do
if [-d $N]; then
printit $N
fi
done
C References
[1] Ulrich Drepper,How To Write Shared Libraries, |http://people.redhat.com/drepper/dsohowtd.pdf, 2003.

[2] Ingo Molnar, Announcement of Exec-Shield, http://people.redhat.com/mingo/exec-shield/ ANNOUNCE-exec-shield,
2003.

[3] grsecurity Linux kernel patches, http://www.grsecurity.net/features.php.

[4] PaX| http://pageexec.virtualave.net.

D Revision History

2004-1-22First internal draft.

2004-1-23Fix typos. Add graphics for ELF file layout.

2004-2-2 Word tweaking.

2004-2-23 Some more typos fixed. Little clarifications.
2004-2-29 More typo fixes.

2004-5-21 Fix typos. Explain BSS a bit. Reported by Mark Cox.

2004-6-16 More typo and language fixes. By Kristin Horne.

10 Version 1.2 Security Enhancements in RHEL

http://people.redhat.com/drepper/dsohowto.pdf/
http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield
http://www.grsecurity.net/
http://pageexec.virtualave.net

	1 Introduction
	2 Exploiting Security Problems
	3 The Plan
	4 Exec-Shield
	5 Position Independent Executables
	6 ELF Data Hardening
	7 Conclusion
	A Using Exec-Shield
	B Script to Test for Safe Programs
	C References
	D Revision History

